Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 17(1): 284-300, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31794223

RESUMO

Therapeutic protein depots have limited clinical success because of the presence of critical preparation barriers such as low encapsulation, uncontrolled release, and activity loss during processing and storage. In the present study, we used our novel protein-nanoencapsulation (into sugar-glass nanoparticle; SGnP) platform to prepare a protein depot to overcome the abovementioned formidable challenges. The SGnP-mediated microparticle protein depot has been validated using four model proteins (bovine serum albumin, horseradish peroxidase, fibroblastic growth factor, and epidermal growth factor) and model biodegradable poly(lactic-co-glycolic acid) polymer system. The results show that our protein-nanoencapsulation-mediated platform provides a new generic platform to prepare a protein depot through the conventional emulsion method of any polymer and single/multiple protein systems. This protein depot has the required pharmaceutical properties such as high encapsulation efficiency, burst-free sustained release, and protein preservation during processing and storage, making it suitable for off-the-shelf use in therapeutic protein delivery and tissue engineering applications.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Proteínas/administração & dosagem , Preparações de Ação Retardada/química , Composição de Medicamentos/métodos , Emulsões , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/metabolismo , Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/metabolismo , Vidro/química , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Células MCF-7 , Microscopia Eletrônica de Varredura , Nanopartículas/ultraestrutura , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Proteínas/química , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Esferoides Celulares/efeitos dos fármacos , Açúcares
2.
Sci Rep ; 9(1): 915, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696860

RESUMO

Bioactive nanosilicates are emerging prominent next generation biomaterials due to their intrinsic functional properties such as advanced biochemical and biophysical cues. Recent studies show interesting dose-dependent effect of fluoride ions on the stem cells. Despite of interesting properties of fluoride ions as well as nanosilicate, there is no reported literature on the effect of fluoride-doped nanosilicates on stem cells. We have systematically evaluated the interaction of fluoride nanosilicate platelets (NS + F) with human dental follicle stem cells (hDFSCs) to probe the cytotoxicity, cellular transport (internalization) and osteogenic differentiation capabilities in comparison with already reported nanosilicate platelets without fluoride (NS - F). To understand the osteoinductive and osteoconductive properties of the nanosilicate system, nanosilicate treated hDFSCs are cultured in three different medium namely normal growth medium, osteoconductive medium, and osteoinductive medium up to 21 d. NS + F treated stem cells show higher ALP activity, osteopontin levels and significant alizarin red staining compared to NS - F treated cells. This study highlights that the particles having fluoride additives (NS + F) aid in enhancing the osteogenic differentiation capabilities of hDFSCs thus potential nanobiomaterial for periodontal bone tissue regeneration.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Saco Dentário/citologia , Fluoretos/farmacologia , Osteogênese/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Fosfatase Alcalina/biossíntese , Materiais Biocompatíveis/química , Biomarcadores , Proliferação de Células , Células Cultivadas , Imunofluorescência , Fluoretos/química , Humanos , Imuno-Histoquímica , Nanopartículas/química , Nanopartículas/ultraestrutura , Osteopontina/genética , Osteopontina/metabolismo , Silicatos/química , Análise Espectral , Células-Tronco/metabolismo
3.
ACS Appl Mater Interfaces ; 10(49): 41924-41934, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30433758

RESUMO

The core-shell polymeric nanofiber, owing to its better controlled release of embedded or encapsulated drugs in contrast with the single-compartment nanofibers, has been extensively studied for biomedical applications such as tissue engineering and wound healing. Electrospinning with co-axial needles is the dominant technique to fabricate nanofiber mat, however, associated with potential limitations such as high voltage requirement, costly equipment, slow deposition rate, required trained personal, not suitable in situ fabrication, and direct deposition of core-shell nanofibers on the wound at patient bedside. To address the above limitations, the work aims to introduce a novel co-axial airbrushing method to fabricate core-shell nanofibers using a simple setup and low-cost equipment, yet having a unique ability for fabrication at patient bedside and direct deposition on wound bed. Air-brush with a coaxial needle is designed to flow two different polymers solution with model biomolecules through core [PEO (polyethylene oxide)/poly-dl-lactide/PCL (polycaprolactone)] and shell (PCL/PEO) needle for the fabrication of the model core-shell nanofiber. Various processing parameters such as flow rate, air pressure, working distance, and concentration of polymer solution which affect the morphology of core-shell nanofibers were studied and found to have a prominent effect. The PCL-PEO nanofiber possesses a defined shell and core structure, tunable sustained release behavior of model proteins (bovine serum albumin and basic fibroblast growth factor; bFGF), and improved mechanical strength. In vitro interaction of human bone marrow-derived mesenchymal stem cells with core-shell fibers demonstrated the cytocompatibility and proliferative and differentiative (for bFGF loaded) properties of the core-shell nanofiber mat. Co-axial airbrushing can be used as a superior less-expensive technique for the fabrication of biomolecules/drug encapsulated core-shell fibers scaffold at patient bedside, which can mimic complex in vivo environment and could modulate cells behavior close to their in vivo condition for tissue regeneration and wound healing.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Células-Tronco Mesenquimais/metabolismo , Nanofibras/química , Soroalbumina Bovina , Cicatrização/efeitos dos fármacos , Animais , Bovinos , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/farmacocinética , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Células-Tronco Mesenquimais/citologia , Poliésteres/química , Poliésteres/farmacocinética , Poliésteres/farmacologia , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacocinética , Soroalbumina Bovina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...